Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Detect the Imperceptible Drowsiness

2010-04-12
2010-01-0746
Prediction of drowsiness based on an objective measure is demanded in machine and vehicle operations, in which human error may cause fatal accidents. Recently, we focused on the pupil which is controlled by the autonomic nervous system, easily and non-invasively observable from the outside of the body. Prior to the large low frequency pupil-diameter fluctuation, which is known to associate with drowsiness, a Gradual Miosis was observed in most subjects. During this miosis period, the subjects were not yet aware of their drowsiness. We have developed a software system which automatically detects the Gradual Miosis in real time.
Journal Article

Lean NOx Trap Modeling for Vehicle Systems Simulations

2010-04-12
2010-01-0882
A transient, one-dimensional lean NOx trap (LNT) model is described and implemented for vehicle systems simulations. The model accounts for conservation of chemical species and thermal energy, and includes the effects of O₂ storage and NOx storage (in the form of nitrites and nitrates). Nitrites and nitrates are formed by diffusion of NO and NO₂, respectively, into sorbent particles, and reaction rates are controlled by chemical kinetics and solid-phase diffusion. The model also accounts for thermal aging and sulfation by means of empirical correlations, which have been derived from laboratory experiments. Example simulation results using the Powertrain Systems Analysis Toolkit (PSAT) are presented.
Journal Article

Accounting for the Duration of Analyses in Design Process Decisions

2010-04-12
2010-01-0908
Although the design phase can account for a sizable amount of the resources consumed during the product realization process, the time and costs associated with the design process are often neglected when making design decisions. To investigate this issue, we define a process-centric decision model in which the design-phase consumption of resources, such as time and money, is explicitly modeled. While it is clear that the utility of a design is almost always directly impacted by the monetary costs of the design process, our decision model also accounts for the fact that the profit earned by a product depends strongly on its launch date. The decision model allows us thus to consider the trade-off between the time necessary for analysis and the improvement in product quality that results from the analysis. The decision model is sufficiently generic that almost any set of beliefs about the alternatives or analyses, as well as any utility-based preference structure can be modeled.
Journal Article

Validation of Sled Tests for Far-Side Occupant Kinematics Using MADYMO

2010-04-12
2010-01-1160
Far-side occupants are not addressed in current government regulations around the world even though they account for up to 40% of occupant HARM in side impact crashes. Consequently, there are very few crash tests with far-side dummies available to researchers. Sled tests are frequently used to replicate the dynamic conditions of a full-scale crash test in a controlled setting. However, in far-side crashes the complexity of the occupant kinematics is increased by the longer duration of the motion and by the increased rotation of the vehicle. The successful duplication of occupant motion in these crashes confirms that a sled test is an effective, cost-efficient means of testing and developing far-side occupant restraints or injury countermeasures.
Journal Article

Investigation on Pelvis Injury Indices Using a Human Finite Element Model

2010-04-12
2010-01-1169
For accurately predicting different fracture patterns of the pelvis frequently observed in pedestrian accidents with SUV/Mini-van, human finite element (FE) models have been developed. Although those models with failure representation can predict occurrence or nonoccurrence of fractures, quantitative estimation of probability of fractures is not possible. For human models without failure representation, typically stress or strain of elements is used for fracture prediction. However, numerous elements must be evaluated when fracture location is not predetermined. This study investigated methodology for accurately predicting probability of pelvic fractures using a minimal number of output parameters. The hood edge and upper and lower parts of the bumper were chosen for representing vehicle fronts. These components were modeled using rigid surfaces with the stiffness of them represented by springs, to constitute 3-component models.
Journal Article

Age Effects on Injury Patterns in Pedestrian Crashes

2010-04-12
2010-01-1164
Approximately 600,000 fatalities occur each year as a result of pedestrians being impacted by motor vehicles (World Bank, 2008). Previous studies (Heller et al., 2009) have utilized databases such as the National Inpatient Sample (NIS) to gain a more thorough understanding of the common injury patterns that occur in real-world traffic collisions involving pedestrians in the United States. The NIS contains records on five to eight million hospital stays annually and provides a wealth of information regarding injuries to hospitalized pedestrian casualties in the U.S. Because of the large number of applicable records in the NIS and the randomized sampling procedure, the data can be used to complete analyses that are not possible with smaller databases such as the Pedestrian Crash Data Study (PCDS), which is not intended to be statistically representative of pedestrian crashes in general.
Journal Article

Occupant Responses in Child Restraint Systems Subjected to Full-Car Side Impact Tests

2010-04-12
2010-01-1043
Accident data show that the injury risks to children seated in child restraint systems (CRSs) are higher in side collisions than any other type of collision. To investigate child injury in the CRS in a side impact, it is necessary to understand the occupant responses in car-to-car crash tests. In this research, a series of full car side impact tests based on the ECE R95 test procedure was conducted. In the vehicle's struck-side rear seat location, a Q3s three-year-old child dummy was seated in a forward facing (FF) CRS, and a CRABI six-month-old (6MO) infant dummy was seated in a rear facing (RF) CRS and also was placed in car-bed restraint. In the non-struck side rear seat location, the RF CRSs also were installed. In addition to testing the CRSs installed by a seatbelt, an ISOFIX FF CRS and an ISOFIX RF CRS were tested. For the evaluations, occupant kinematic behavior and injury measures were compared.
Journal Article

Impact of Energy Management on the NPV Gasoline Savings of PHEVs

2010-04-12
2010-01-1236
This paper evaluates the impact of energy management strategy on the cost benefits of a plug-in hybrid electric vehicle (PHEV) by taking into account the impact of PHEV energy management on battery life and petroleum displacement over the life of the vehicle. Using Battery in the Loop (BIL), a real battery is subjected to transient power demands by a virtual vehicle. The vehicle energy management strategy is varied, resulting in different battery utilization scenarios. Battery life, which varies with battery utilization, is estimated for the different energy management scenarios. The same representative drive cycle is used over the different energy management strategies to isolate the impact of energy management on battery utilization. PHEV gasoline savings, in comparison to a charge sustaining hybrid, are calculated for each of the energy management strategies, for a fixed distance of 40 miles.
Journal Article

Car-to-X Simulation Environment for Comprehensive Design Space Exploration Verification and Test

2010-04-12
2010-01-0451
A future car-to-x communication system has to fulfil a lot of different requirements concerning high performance and functionality that are given by the field of application. To be able to optimize the system architecture regarding these constraints an intensive architecture evaluation and investigation is necessary. Within this paper a simulative approach for comprehensive design space exploration, verification, and test of a car-to-x communication unit is presented. The proposed simulation environment allows for a flexible adaption to the test case by being able to interconnect an arbitrary number of simulators of different type and different granularity. As a novelty complete embedded car-to-x systems can be investigated by integrating several SystemC based architecture models into an environmental simulation and observing their behavior and interaction.
Journal Article

The Development of an Highly Modular Designed Zero-Dimensional Engine Process Calculation Code

2010-04-12
2010-01-0149
The main objective of the FVV-project “Cylinder Module” was the development of a profoundly modular designed concept for object-oriented modeling of in-cylinder processes of internal combustion engines. It was designed in such a way, that it can either be used as a stand-alone real working-process calculation tool or in tools for whole vehicle simulations. It is possible to run the “Cylinder Module”-code inside the FVV-“GPA”-software for transient vehicle and driving cycle simulations and it is possible to use the graphical user interface “ATMOS” of the “GPA”-project. The code can also be used as a user-subroutine in 1-D-flow simulation codes. Much effort was spent on the requirements of flexibility and expandability in order to be well prepared to cope with the diversity of both today's and future tasks. The code is freely available for members of the German Research Association for Combustion Engines (FVV).
Journal Article

Integrated Numerical and Experimental Approach to Determine the Cooling Air Mass Flow in Different Vehicle Development Stages

2010-04-12
2010-01-0287
This paper presents an integrated numerical and experimental approach to take best possible advantage of the common development tools at hand (1D, CFD and wind tunnel) to determine the cooling air mass flow at the different vehicle development stages. 1D tools can be used early in development when neither 3D data nor wind tunnel models with detailed underhood flow are available. A problem that has to be resolved is the dependency on input data. In particular, the pressure coefficients on the outer surface (i.e. at the air inlet and outlet region) and the pressure loss data of single components are of great importance since the amount of cooling air flow is directly linked to these variables. The pressure coefficients at the air inlet and outlet are not only a function of vehicle configuration but also of driving velocity and fan operation. Both, static and total pressure coefficient, yield different advantages and disadvantages and can therefore both be used as boundary conditions.
Journal Article

Subsystem Rollover Tests for the Evaluation of ATD Kinematics and Restraints

2010-04-12
2010-01-0518
The development of a repeatable dynamic rollover test methodology with meaningful occupant protection performance objectives has been a longstanding and unmet challenge. Numerous studies have identified the random and chaotic nature of rollover crashes, and the difficulty associated with simulating these events in a laboratory setting. Previous work addressed vehicle level testing attempting to simulate an entire rollover event but it was determined that this test methodology could not be used for development of occupant protection restraint performance objectives due to the unpredictable behavior of the vehicle during the entire rollover event. More recent efforts have focused on subsystem tests that simulate distinct phases of a rollover event, up to and including the first roof-to-ground impact.
Journal Article

What's Speed Got To Do With It?

2010-04-12
2010-01-0526
The statistical analysis of vehicle crash accident data is generally problematic. Data from commonly used sources is almost never without error and complete. Consequently, many analyses are contaminated with modeling and system identification errors. In some cases the effect of influential factors such as crash severity (the most significant component being speed) driver behavior prior to the crash, etc. on vehicle and occupant outcome is not adequately addressed. The speed that the vehicle is traveling at the initiation of a crash is a significant contributor to occupant risk. Not incorporating it may make an accident analysis irrelevant; however, despite its importance this information is not included in many of the commonly used crash data bases, such as the Fatality Analysis Reporting System (FARS). Missing speed information can result in potential errors propagating throughout the analysis, unless a method is developed to account for the missing information.
Journal Article

Systems to Silicon: A Complete System Approach to Power Semiconductor Selection for Environmentally Friendly Vehicles

2010-10-05
2010-01-1989
A complete system approach to power semiconductor analysis and selection is set forth in this paper. In order to address design overkill, a suitable power profile across the desired drive schedule is obtained through vehicle simulation in lieu of worse case operating conditions. The representative profile is then applied to detailed models of the inverter, power device, and power device thermal stack-up in order to predict worse case, silicon junction temperature rise. The simulation stream includes a closed silicon thermal loop that leads to more accurate power loss and junction temperature calculations. The models are combined and exercised in a single platform for ease of integration and fast simulation. Herein, the methods will be applied to a working example of an inverter for motor drives, and analytical results will be reviewed.
Journal Article

Air Intake System Optimization for Acoustic Advantage on Automotive Vehicles

2010-10-05
2010-01-1985
Recently quietness has become an important quality parameter for automotive vehicles and as a result various improvements have been brought to reduce noise at system and vehicle level. Due to stringent noise emission norms on automotive vehicles and increasing desire of quieter in-cab performance by users, reduction of air intake noise tends to be an area of explanation. Air intake noise, which was relatively considered as a minor source of noise in the past, is now gaining importance. To reduce air intake noise basically resonator and expansion chamber are used on automotive vehicles. Resonators are widely used for noise reduction of intake and exhaust systems, but due to increased number of components, its associated cost; complexity of the system increases. The next option that is an expansion chamber prevents the formation of large amplitude standing waves and dissipates sound energy, however use of such a device reduces engine torque at narrow range of engine speeds.
Journal Article

Evaluation of Proposed Protocols for Assessing Vehicle LATCH System Usability

2013-04-08
2013-01-1155
This project assessed current or proposed protocols for improving the usability of LATCH (Lower Anchors and Tethers for Children). LATCH hardware in the left second-row position of 98 2011 or 2010 model-year vehicles was evaluated using ISO and SAE LATCH usability rating guidelines. Child restraint/vehicle interaction was assessed using ISO and NHTSA proposed procedures. ISO ratings of vehicle LATCH usability ranged from 41% to 78%, while vehicles assessed using the SAE draft recommended practice met between 2 and all 10 of the recommendations that apply to all vehicles. There was a weak relationship between vehicle ISO usability ratings and the number of SAE recommended practices met by a vehicle. Twenty vehicles with a range of vehicle features were assessed using the ISO vehicle-child restraint form and 7 child restraints; ISO vehicle-child restraint interaction scores ranged from 14% to 86%.
Journal Article

Investigating Through Simulation the Mobility of Light Tracked Vehicles Operating on Discrete Granular Terrain

2013-04-08
2013-01-1191
This paper presents a computational framework for the physics-based simulation of light vehicles operating on discrete terrain. The focus is on characterizing through simulation the mobility of vehicles that weigh 1000 pounds or less, such as a reconnaissance robot. The terrain is considered to be deformable and is represented as a collection of bodies of spherical shape. The modeling stage relies on a novel formulation of the frictional contact problem that requires at each time step of the numerical simulation the solution of an optimization problem. The proposed computational framework, when run on ubiquitous Graphics Processing Unit (GPU) cards, allows the simulation of systems in which the terrain is represented by more than 0.5 million bodies leading to problems with more than one million degrees of freedom.
Journal Article

Scalable Complexity Simulation in the Electric Vehicle Thermal Management Development Process

2013-04-08
2013-01-1777
In order to provide efficient thermal management for an electric vehicle, the development of the cooling and conditioning system has to start early on in the overall product development cycle. This means that the first simulation models have to make do with relatively few actual data, mostly based on concepts and design studies. Accordingly the possible results are mainly useable for early on feasibility assessments. With more data and more details available, these simulation models gradually evolve, until in the end the overall cooling system is modeled with a relatively high level of detail. This allows e.g. transient analysis of warm-up or cool-down runs, simulation of driving cycles, implementation and optimization of control strategies. Although this basic workflow is true both for ICE and electric vehicles, for the latter specific topics like battery thermal management and HVAC integration add to the overall complexity.
Journal Article

Modularity Adoption in Product Development: A Case Study in the Brazilian Agricultural Machinery Industry

2014-01-15
2013-01-9093
Facing a competitive and globalized market and with increasingly demanding customers, companies must constantly seek the development of practices in the development of new products. One of the current practices is the adoption of modularity. In that sense, the objective of this paper is to conduct an analysis of this practice in a Brazilian company, which manufactures agricultural machinery. The applicability of modular design in current products is focused. Therefore, a case study approach has been chosen. First, a review of the scientific literature was conducted, followed by field research, for collecting data based on interviews with product engineers and technical documentation. The case study shows the applicability of the modular design concept in a combine header, by increasing the number of repeated components. The modular header approach facilitates the implementation of engineering changes and allows greater standardization of components.
Journal Article

An Innovative Approach to Race Track Simulations for Vehicle Thermal Management

2013-11-20
2013-01-9121
Within the pre-development phase of a vehicle validation process, the role of computational simulation is becoming increasingly prominent in efforts to ensure thermal safety. This gain in popularity has resulted from the cost and time advantages that simulation has compared to experimental testing. Additionally many of these early concepts cannot be validated through experimental means due to the lack of hardware, and must be evaluated via numerical methods. The Race Track Simulation (RTS) can be considered as the final frontier for vehicle thermal management techniques, and to date no coherent method has been published which provides an efficient means of numerically modeling the temperature behavior of components without the dependency on statistical experimental data.
X